Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29555, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660240

ABSTRACT

Zea mays L is a crucial crop for Brazil, ranking second in terms of production and sixth in terms of exports. In Brazil, the second season, or off-season, accounts for 80 % of the overall maize output, which primarily occurs after the soybean main season. A maize yield forecast model for the off-season was developed and implemented throughout Brazilian territory due to its importance to the country's economy and food security. The model was built using multiple linear regressions that connected outputs simulated from a land surface model used in large-scale analysis for agriculture (JULES-crop), to agrometeorological indicators. The application of the developed model occurred every 10 days from the sowing until the maturation. A comparison of the forecasting model was verified with the official off-season maize yields for the years 2003-2016. Agrometeorological indicators during the reproductive phase accounted for 60 % of the interannual variability in maize production. When outputs simulated by JULES-crop were included, the forecasting model achieved Nash-Sutcliffe modeling efficiency (EF) of 0.77 in the maturation and EF = 0.72 in the filling-grain stage, suggesting that this approach can generate useful predictions for final maize yield beginning on the 80th day of the cycle. Outputs of JULES crop enhanced modeling performance during the vegetative stage, reducing the standard deviation error in prediction from 0.59 to 0.49 Mg ha-1.

2.
Int J Biometeorol ; 68(1): 57-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880506

ABSTRACT

Crop irrigation requirements are usually estimated based on crop evapotranspiration (ETc) as determined by the reference evapotranspiration (ETo) and crop coefficient (Kc). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d-1. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.


Subject(s)
Agricultural Irrigation , Crops, Agricultural , Brazil , Weather , Water
3.
Int J Biometeorol ; 67(11): 1869-1879, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37674062

ABSTRACT

Irrigation water requirements are commonly estimated based on the estimated crop evapotranspiration (ETc) as determined by the reference evapotranspiration (ETr) and crop coefficient (Kc). Recent studies show that, at high evaporative demand (high ETr), Kc tends to decrease, creating an inverse ETr-Kc relationship. The focus of this long-term study is to, if at high atmosphere demand, there is the same inverse ETr-Kc relationship in Nebraska, USA, one of the most intensely irrigated regions in the world, and as a result, propose an adjustment to the Kc-ETr approach. The study was carried out in eastern Nebraska for maize-soybean rotation fields for the period 2002-2012. The Kc was estimated based on energy balance data from eddy covariance flux towers installed in the field and a nearby automated weather station throughout the growing seasons. We found that average Kc values varied depending on the year under high ETr; measured ETc agreed reasonably well with the FAO-56 manual predicted values, but in years with high ETr such as 2012 and 2002 affecting ETc values over the growing season. It was observed that Kc decreased as ETr increased, mainly when ETr reaches values greater than 6 mm d-1 (P values < 0.001). This most likely was due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high atmospheric demands. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETr to improve the required irrigation depth and irrigation management.

4.
Bioscience ; 66(4): 307-316, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-29599535

ABSTRACT

This article assesses sugarcane yield gaps (YG) in Brazil to determine the degree to which production can be increased without land expansion. In our scenario assessments, we evaluated how much of the projected sugarcane demand to 2024 (for both sugar and bioethanol) can be satisfied through YG closure. The current national average yield is 62% of yield potential estimated for rainfed conditions (i.e., a YG of 38%). Continuing the historical rate of yield gain is not sufficient to meet the projected demand without an area expansion by 5% and 45% for low- and high-demand scenarios, respectively. Closing the exploitable YG to 80% of potential yield would meet future sugarcane demand, with an 18% reduction in sugarcane area for the low-demand scenario or a 13% expansion for the high-demand scenario. A focus on accelerating yield gains to close current exploitable YG is a high priority for meeting future demand while minimizing pressure on additional land requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...